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How does sQLEAR work in a 
live networks test set-up
Overview
Maintaining the voice service Quality of Experience 
(QoE), reducing subscriber churn to OTT providers, 
and growing voice revenue through VoLTE 
expansion, while optimizing CAPEX/OPEX are 
key concerns for mobile network operators. 
Therefore, obtaining accurate, controlled, and 
easy to implement voice QoE predictors, as well 
as securing the ability to act in nearly real-time 
on network centric issues are crucial for enabling 
cost efficient, optimized network operations that 
will meet and maintain customer expectations and 
demands. InfoVista’s sQLEAR voice QoE predictor is 
specifically designed to answer these concerns and 
goals, benefiting MNOs and regulators alike.

Infovista’s sQLEAR is the first industry solution to 
utilize a combination of machine learning, network/
client/codec information and reference audio for 
the assessment of transmission network impact on 
speech quality for mobile packet-switched voice 
services. Therefore, sQLEAR is the first intrusive 
parametric voice QoE predictor in the industry, 
which can be used for high definition (super 
wide and full band) voice QoE testing across 4G/
LTE and 5G networks, both carrier (a.k.a VoLTE, 
VoNR) and OTT (e.g. WhatsApp). This white paper 
describes sQLEAR concept and its benefits, sQLEAR 
operational mode and test set up. In addition, the 
paper discusses sQLEAR performance in lab and 
field trials, with focus on carrier voice service (a.k.a 

VoLTE EVS-CA/AMR-IO and AMR-WB) use cases.

Concept
Infovista machine learning based QoE predictor is 

developed following the new ratified ITU-T P.565 

framework’s procedures and requirements. sQLEAR 

uses ITU-T P.565 provided reference speech 

sample, learning and validation test files, as well 

as additional learning and validation data sets 

collected in real live VoLTE and voice generic OTT 

(WhatsApp based) network scenarios. During the 

development (a.k.a learning/training and validation) 

phase (Figure 1) the following information is used 

to create the inputs (a.k.a features) of sQLEAR 

ML algorithm: codec (e.g. bit rate, bandwidth, and 

special modes of EVS codec - Channel Aware 

CA and AMR-IO interoperability), client (e.g. error 

concealment, behavior with packet loss and 

jitter), as well as RTP information (e.g. packet loss, 

jitter) and reference speech based information 

(e.g. location of packet loss, audio energy at that 

position based on Discontinuous Transmission, 

DTX, information). The ML features are then used 

to teach and optimize the ML algorithm towards the 

target value which is the MOS value (ITU-T P.863) 

measured immediately after the decoding, before 

the audio path. Thus, sQLEAR algorithm provides 

a network centric voice QoE predictor (MOS), free 

of the device’s characteristics, such as automatic 

gain control (AGC), frequency shaping, voice 

enhancement devices (VED).

Figure 1. sQLEAR concept and operational mode.
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sQLEAR is using a combination of two ML regression 

algorithms, Random Forest (RF) regressor and 

Support Vector Regressor (SVR) in order to ensure 

not only a high accuracy, but also a controllable and 

consistent accuracy. The two regressors (Figure 

2 a,b) use different techniques to predict sQLEAR 

score. Random Forest algorithm (Figure 2a) uses a 

multitude of decision trees to predict sQLEAR score 

as the mean prediction (regression) of the individual 

trees. The SVR (Figure 2b) predicts sQLEAR as a 

function f(x) that deviates from the target values y 

(a.k.a ITU-T P.863 score) by a value not greater than 

ε for each test sample (a.k.a degraded speech file). 

For the test samples for which the constrain cannot 

be met, SVR uses two slack variables ξn and ξ*n * 

for each test sample, which allow regression errors 

to exist up to the value of ξn and/or ξ*n *, and still 

satisfy the required conditions. By keeping the 

predicted sQLEAR scores within the boundaries of 

the two slack values, allows SVR algorithm to act 

as a predictor corrector, as follows. It is expected 

that RF and SV regressors predict closely the same 

sQLEAR scores. If the difference between RF and 

SVR sQLEAR predictors is large, then it means that 

the difference goes outside the boundaries defined 

by the two SVR slack values. A decision function 

based on the FER value is used to decide which 

of the RF and SV regressors give the best result. 

Consequently, sQLEAR accuracy is controlled and 

kept consistent during operation/running time. More 

than 200000 samples have been used for learning 

and validation which resulted in performance 

predictions of 96%-98% correlation to ITU-T P.863. 

More about sQLEAR performance is discussed later 

on in the paper.

Figure 2. sQLEAR ML algorithms.
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Operational mode
During the operational phase, sQLEAR measurement 

procedure is the same as for ITU-T P.863, in the 

sense that it sends a reference speech sample (same 

as used for learning/training and validation) to the 

system under test and predicts voice QoE from the 

combination of the output from the device and the 

sent reference sample (Figure 1). However, the output 

from the device differs between sQLEAR and ITU-T 

P.863. In the case of sQLEAR, the output from the 

device is the RTP stream ( jitter, packet loss), while 

in case of ITU-T P.863, it is the recorded audio. If it 

is desired to perform additional analysis of quality 

concerning scenarios, the degraded speech file can 

still be recorded and stored for further analysis. The 

measurement set up scheme is presented in Figure 3.

The reference speech file is encoded by the device- 

based codec and sent over the transmission link on 

which it can be altered by various all-IP network error 

patterns (frame erasure FER, a.k.a packet loss, jitter). 

The encoding is performed for a specific bandwidth 

with different codec rates and modes (e.g. channel-

aware mode, IO for EVS case). At the receiving end, 

the speech file is submitted to the EVS/AMR WB 

decoder and jitter buffer. The IP stream output is 

captured by a pre-processing module which decodes 

information regarding arrival time, sequence number 

and payload size, which is used to identify DTX 

presence, lengths and location, as well as to determine 

the codec bandwidth/ bit rate/mode used. The DTX 

information is used for synchronizing the reference 

speech file with the IP/RTP packet stream. The 

synchronization is achieved by correlating the DTX 

pattern and speech frames with the reference speech 

sample, which is stored at the receiving side. Through 

this process a binary file (.vqi) without FER (packet loss, 

jitter) during DTX periods (occurring during silence) is 

created to emulate the fact that errors present during 

silence do not impact the perceived speech quality. It 

should be noted that no recorded speech is needed 

to perform these tasks. The binary .vqi file along with 

the information regarding codec bandwidth/ bit rate/

mode is submitted to the module that calculates the 

ML features which are used as input to the pre-trained 

ML model. The output of the ML model is sQLEAR 

predicted voice QoE (a.k.a MOS).

The measurement set-up is mainly the same for all 

three use cases: VoLTE EVS, VoLTE AMR-WB and 

OTT/WhatsApp. The only difference comes with OTT 

voice. First, OTT voice use case does not use DTX, 

but Variable Bit Rate that has a similar behavior with 

DTX, resulting in much smaller packets during silence 

than during speech. Therefore, for OTT use case, 

these smaller packets play the exact role as the DTX 

packets for EVS/AMRWB use cases, as described 

above. Second, rather than using the OTT voice 

application- based client, a generic client is used. The 

main reason is the fact that the variety of OTT voice 

applications, with proprietary codecs and clients, and 

different levels of encryption become technically, 

practically and costly prohibitive to be tested in real 

live networks. Therefore, in order to establish a good 

benchmark, the generic client uses open source 

codec and client which are common among OTT 

voice services (e.g. OPUS codec, PJISP client). Open 

source codec/client offer many configurable settings 

which can be used to emulate very popular OTT voice 

applications (e.g. WhatsApp). More about this in new 

white paper to come on generic OTT testing.

Figure 3. sQLEAR measurement set-up.
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Which are the benefits of a 
network centric approach
Cost efficiency is today crucial for MNOs to manage 

and operate their 4G/LTE networks while deploying 

5G. sQLEAR offers an optimal solution to this 

challenge by providing a network-centric voice 

QoE predictor, as described above. Thus, sQLEAR 

is free of device’s impact (e.g. frequency shaping, 

AGC, VED), which comes with three important 

benefits. First, by using sQLEAR, a cost -efficient 

troubleshooting and/or optimization towards 

network issues rather than device issues can be 

performed. Second, independency of the device’s 

audio path and any speech frequency shaping and/

or processing within the device, ensures consistent 

and comparable sQLEAR scoring between different 

devices models.  In addition, device transparency 

eliminates the need of tuning/calibration of the 

voice QoE predictor for each device model, and 

consequently enabling a prediction free of audio 

path artifacts.  Third, the independency of the 

speech frequencies and content, and the network 

centeredness make languages less relevant for 

sQLEAR usability and operation.

In conclusion, network centric and device 

transparent approach makes sQLEAR a powerful 

voice QoE prediction solution for drive test 

scenarios designed for network troubleshooting and 

optimization, monitoring and regression testing, and 

significantly important for benchmarking campaigns 

when it is desired to remove the device’s impact.

What should you know about 
machine learning based 
voice quality predictors
The unique machine learning techniques offer three 

clear benefits.  First, machine learning algorithms 

are best suited to describe the continuously 

increasing complexity of the inter-dependencies 

between all network/codec/client parameters, as 

well as their impact and contribution to speech 

quality. Second, machine learning techniques 

are flexible and easy to tune to any changes that 

emerge from the introduction of new codecs/clients 

which a QoE predictor needs to account for; thus, 

enabling operational efficiency for QoE solutions 

using ML algorithms. Third, there is no need for 

additional calibration to the MOS scale using first 

or third order polynomials, because the machine 

learning based algorithm “learns” the precise MOS 

scale that it needs to predict. Thus, ML techniques 

are free of any accuracy artifacts that calibration 

procedures may involve.

However, these benefits are very sensitive to 

the possible misusage of the ML techniques; 

respectively, overfitting and underfitting of the ML 

algorithm towards the learning/training and validation 

data bases. Overfitting describes the bias of an 

algorithm towards the learning/training data sets, and 

underfitting defines a poor accuracy algorithm on 

leaning/training and validation data sets.

In this section the sQLEAR ML performance is 

analyzed for VoLTE EVS and AMRWB use case.

The process of ML learning/training from a data 

set involves the optimization of the ML algorithm’s 

parameters, called “hyper parameters”. The 

optimization is performed towards the best 

model, respectively highest accuracy (or minimal 

underfitting) on learning and validation data sets, 

and minimal, or preferably no bias, on the learning 

data set (least overfitting). The evaluation of these 

effects is performed using the Learning Curves 

technique [Jan N van Rijn et al.  “Fast algorithm 

selection using learning curves”; Springer. 2015, 

pp. 298–309], which analyzes the ML algorithm’s 

mean square error (MSE) for the learning/training 
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and validation data sets. An ML algorithm is not 

underfitted if it shows low learning/training MSE. An 

ML algorithm is not overfitted if the validation MSE 

continuously decreases with the increase of the size 

of the learning/training data set and finally reaches 

convergence to a minimum difference against 

the learning/training MSE. The Learning Curves 

technique is used regardless of the ML algorithm 

category; however, with slightly different nuances if 

supervised or unsupervised learning is used.

sQLEAR uses supervised ML from the regression 

algorithms’ category, respectively the combination 

of RF regressor and SVR, as described above, and 

consequently benefiting sQLEAR with controlled 

and consistent accuracy.  The results of the sQLEAR 

ML algorithms’ performance is presented in Figure 

4a (VoLTE EVS) and Figure 4b (VoLTE AMRWB). 

sQLEAR used a data set of about 130000 samples 

for VoLTE EVS and of about 30000 samples for 

VoLTE AMRWB; with a 50-50 split between learning/

training and validation/testing set. Figure 4a,b 

shows that the ML algorithm used by sQLEAR has 

a very low MSE value on the learning/training data 

set, which proves that ML algorithm in sQLEAR is 

not underfitted or in other words is highly accurate, 

in both use cases. Figure 4a,b shows that the 

validation MSE converges fast to the learning/

training MSE, for learning set size larger than about 

70000 samples in EVS case (Figure 4a) and larger 

than about 15000 samples in AMRWB case (Figure 

4b); respectively about the size used for learning 

data sets in each use case; sQLEAR has been 

trained on about 65000 samples for EVS use case 

and about 17000 samples for AMRWB sQLEAR. In 

addition, the trend of the validation error, in both 

use cases, does not deviate a lot and has steady 

decrease, which proves that having larger learning/

training data sets cannot decrease the error 

significantly. Therefore, it can be concluded that ML 

algorithm used in sQLEAR is not overfitted.

In conclusion, ML based solutions demand using 

Learning Curves techniques to evaluate the 

ML algorithm’s performance for overfitting and 

underfitting. The results presented and discussed 

in this section (Figure 4a,b), show that the ML 

algorithm used in sQLEAR is free of overfitting (bias 

towards a data set) and underfitting (poor accuracy), 

for both VoLTE EVS and AMRWB use cases. More 

on sQLEAR overall performance and accuracy is 

discussed in the next section.
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Which are sQLEAR lab and 
field trials validation results
The thorough and complete sQLEAR validation 

involved three level of testing.

Tests performed based on simulated device 

using an audio path without degradations.  This 

is in alignment with ITU-T P.565 and sQLEAR 

performance must meet minimum requirements as 

defined in the framework. Results of these tests are 

discussed above.

Tests with real devices showing good audio paths. 

In this case sQLEAR and ITU-T P.863 are running 

simultaneously using same type of device under 

controlled conditions, which are required to cover 

the entire quality scale, from poor to very good 

radio coverage, in order to ensure meaningful 

analysis (e.g. correlation coefficient calculation). 

Results are discussed and presented above.

Tests performed by customers as independent parties. 

These are drive test scenarios comparing sQLEAR 

and ITU-T P.863 on a variety of devices and running in 

various radio environments. Results and conclusions 

on these tests are presented above.

Minimum performance requirements 
as defined by ITU-T P.565
sQLEAR is developed based on ITU-T P.565 

framework, and consequently its performance has 

been evaluated against the framework’s minimum 

performance requirements on the ITU-T provided 

test vectors, learning and validation data sets, 

and reference speech sample. As required by 

ITU-T, the validation run in two phases: first with 

“known” simulated validation data and second with 

“unknown” live validation data. By “known” is meant 

that the data has been used during the ML learning-

validation phases; by “unknown” is meant that the 

voice QoE predictor has never been exposed to this 

data. Both these validation data sets are per P.565/

Annex F.

VoLTE EVS use cases
The sQLEAR results on the unknown live validation 

data set for VoLTE -EVS use cases are presented in 

Figure 5. Figure 5a shows for sQLEAR a correlation 

coefficient of 0.98, an RMSE (root mean square 

error) of 0.27MOS and a mean absolute error MAE 

(mean absolute error) of 0.17MOS, when compared 

with ITU-T P.863.  All these performance metrics 

meet the ITU-T P.565 minimum requirements 

which are: correlation coefficient less than 0.96, 

RMSE/MAE <0.3MOS (P.565/Annex D).  Figure 

5b shows the distribution of the prediction error 

(a.k.a absolute error, AE) as the absolute difference 

between sQLEAR score and ITU-T P.863 score 

per individual speech sample. In this case as 

well, sQLEAR meets the minimum performance 

requirements (see Table 1, EVS).
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Intrusive parametric voice QoE predictors such as 

sQLEAR are mainly designed, and consequently 

most suitable, for drive testing scenarios. Therefore, 

from a drive testing perspective, it is crucial that 

solutions such as sQLEAR accurately predict poor 

quality as well as correctly differentiate quality levels 

and identify quality trends and variations.  While 

accurate prediction of poor quality is important 

for network troubleshooting and optimization, the 

correct estimation of the high quality is equally 

important because it ensures that optimization effort 

is not spent when/where there is no need.

In addition, it is required a high accuracy in order to 

be able to differentiate the quality differences on the 

upper end of the scale. This is needed since even 

small differences can create a big impact if there are 

a lot of values at the upper end of the quality scale. 

Figure 6a,b shows sQLEAR performance in a broad 

range of FER conditions, for various encoding rates, 

both EVS as well as EVS AMR-IO mode. sQLEAR 

follows closely ITU-T P.863 behavior and trend on 

the whole range of conditions from very good (low 

FER values) to very poor quality (high FER values), 

with almost no differences in very poor conditions.

AE MOS < 0.25 MOS < 0.5 MOS < 1

ITU-T P.565 Requirements 70% 90% 99%

sQLEAR
VoLTE EVS 74.72% 91.98% 99.36 %

VoLTE AMRWB 81.59% 95.17% 99.8%

Table 1. sQLEAR prediction error distribution for VoLTE EVS and AMRWB unknown live validation data set (ITU-T P.565).
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Figure 6. sQLEAR and ITU-T P.863 vs FER at different encoding bit rates, EVS use case.

Table 2 (EVS/AMR-IO) presents sQLEAR performance when predicting the highest quality for each EVS/

EVS-AMR-IO rates. sQLEAR either shows very small differences, and only at the second decimal, or no 

differences for some of the bit rates, when compared to ITU-T P.863. This is in agreement with ITU-T P.565 

– Appendix IV.
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VoLTE AMR-WB use case
sQLEAR results on the unknown live validation 

data set for VoLTE -AMR-WB show similar results 

as for EVS use case. Figure 7a shows a correlation 

coefficient of 0.98, an RMSE of 0.22MOS and 

a mean absolute error MAE of 0.14MOS, when 

compared with ITU-T P.863. As in EVS case, all 

three-performance metrics meet the ITU-T P.565 

minimum requirements. Figure 7b shows the 

distribution of the prediction error ( AE) which also 

meets the minimum performance requirements (see 

Table 1, AMRWB).

Codec Bit rates Max MOS (ITU-T P.863) Max Predicted MOS (sQLEAR) Difference

EVS, AMR-IO

5.90 4.06 4.08 -0.02

6.60 3.93 3.91 0.02

7.20 4.16 4.18 -0.02

8.00 4.27 4.22 0.05

8.85 4.36 4.33 0.02

9.60 4.55 4.54 0.01

12.65 4.55 4.53 0.02

13.20 4.57 4.57 0

16.60 4.71 4.71 0

23.85 4.58 4.57 0.01

24.40 4.74 4.74 0

AMRWB

6.60 3.63 3.60 0.03

8.85 4.04 4.02 0.02

12.65 4.26 4.25 0.01

23.85 4.41 4.38 0.03

Table 2. ITU-T P.863  and sQLEAR for EVS and AMRWB rates.
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Like for EVS use case, AMRWB case (Figure 8) 

shows that sQLEAR follows closely ITU-T P.863 

behavior and trend on the whole range of network 

conditions from very good (low FER values) to 

very poor quality (high FER values), with almost no 

differences in very poor conditions.

Like in EVS use case, sQLEAR predictions of the 

highest quality for AMRWB rates show either very 

small differences, and only at the second decimal, 

or no differences for some of the bit rates, when 

compared with ITU-T P.863 (Table 2, AMRWB); thus, 

in agreement with ITU-T P.565 – Appendix IV.

In conclusion, sQLEAR meets ITU-T P.565 minimum 

performance requirements, for both VoLTE EVS and 

AMRWB use cases.

Validation in lab and field trials
In order to validate sQLEAR robustness and 
performance consistency, additional validation tests 
in lab and field trials have been performed with 
several completely new (“unknown”) data sets.

Overall performance
These tests used real devices with different audio 

paths, but most devices using digital audio and 

extensively tuned to ensure that ITU-T P.863 scores 

are not significantly affected by the audio path. Taking 

care of these aspects is crucial to ensure a meaningful 

comparison between sQLEAR and ITU-T P.863.

The test conditions covered the whole quality range 

to ensure meaningful correlation calculations and 

used various devices, both EVS and AMRWB based. 

For VoLTE EVS the following devices have been 

used: Samsung 960F (9.9kb/s, 24.2kb/s), Sony XZ2 

(9.6kb/s), F8141 (13.2kb/s). For VoLTE AMRWB the 

following devices have been used: Samsung 960U 

(12.65kb/s, 23.85kb/s), and 977N (23.85kb/s), Sony 

XZ2 (23.85kb/s).

During the trials, the devices have been locked on 

each codec at a time, and on various bit rates, in 

order to run validation analysis per individual use 

case. In addition, for each use case, sQLEAR and 

ITU-T P.863 run simultaneously, using same device 

type/model.

Correlation, RMSE, MAE and AE distribution has 

been calculated for EVS (about 1800 samples) 

and AMRWB (about 1100 samples) data sets. The 

validation results are presented in Figure 9, Figure 

10 and Table 3 and they show for both use cases 

that although these data sets are completely new to 

sQLEAR and contain various live network conditions, 

sQLEAR exhibits high performance on all metrics, 

correlation coefficients of about 98%, RMSE and 

MAE lees than 0.3MOS.
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Figure 9. sQLEAR performance results for VoLTE EVS use case, 
lab and field data
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In addition, sQLEAR scores distribution versus 
ITU-T P.863 scores have been analyzed and 
validated. The results (Figure 11) show that the two 
distributions, sQLEAR and ITU-T P.863 scores, are 
statistically significant close to each other. More 
importantly, results show that sQLEAR distinguishes 
in agreement with ITU-T P.863 both peak poor 
quality as well as peak good quality.

In conclusion, sQLEAR can accurately detect quality 
trends, which makes sQLEAR a reliable voice QoE 
predictor for monitoring, troubleshooting and 
optimization towards network issues, as well as 
benchmarking.
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Figure 10. sQLEAR performance results for VoLTE AMRWB use case, lab and field data.

AE MOS < 0.25 MOS < 0.5 MOS < 1

sQLEAR
VoLTE EVS 70.01% 90.1% 99%

VoLTE AMRWB 73.52% 92.24% 100%

Table 3. sQLEAR prediction error distribution for VoLTE EVS and AMRWB lab and field trials data.
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Figure 11. sQLEAR vs. ITU-T P.863 scores distributions.
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Consistency
As a network centric QoE predictor, sQLEAR is 
expected to show consistent results across devices. 
Different devices, using the same codec rate and 
running in the same network conditions should 
show the same sQLEAR score. Since it is difficult 
to define the exact same network conditions, the 

maximum achieved sQLEAR score across all the 
devices has been analyzed. The results (Table 4) 
show that for all the devices, per each codec rate, 
the maximum sQLEAR score achieved is the same to 
the first decimal. Thus, sQLEAR shows consistency 
across devices.

Device@rate VoLTE AMR VoLTE EVS

sQLEARmax
960U@12.65 960U@23.85 XZ2@23.85 960F@9.6 F8131@9.6

4.33 4.35 4.35 4.53 4.53

Table 4. sQLEAR consistency across devices.

Exploiting the benefits of device 
independency
During the validation process, detailed analysis 

on sQLEAR and ITU-T P.863 scores has been 

performed for each device-codec rate combination. 

In the case of Samsung 960F / VoLTE AMRWB, 

12.65kB/s and 23.85kb/s, the sQLEAR scores 

distribution showed an unexpected shift when 

compared with ITU-T P.863 scores (Figure 12); with 

sQLEAR unveiling more optimistic voice quality. 

The phenomenon has been detected only on one 

device, AMRWB codec, and further investigations 

showed that the processing on the audio path of 

the device was the reason for artificially degrading 

ITU-T P.863 scores. Consequently, using such a 

device presents the risk of covering real problems 

in the network, and therefore, sQLEAR is preferred 

over ITU-T P.863 in these cases.  Free of device’s 

impact, sQLEAR proves to be able to certify devices 

which can be safely used for perceptual voice 

quality prediction.

However, it should be noted that if analog audio 

is used for the tests, then always a certain level 

of degradation of the audio path is expected and 

consequently artificially impacting ITU-T P.863 

scores, but not sQLEAR scores which predict the  

network centric quality, free of the audio path impact.

In conclusion, extensive validation tests with various 

lab and field conditions, from poor to high quality, 

and different devices and codec rates combinations, 

show that sQLEAR exhibits high performance. 

The validation results also prove that sQLEAR can 

be safely used for monitoring, troubleshooting, 

optimization and benchmarking. In addition, sQLEAR 

consistency across devices has been validated, 

which turns out to be a safe method to certify the 

devices which are appropriate to be used with ITU-T 

P.863 without the danger of introducing the artifact 

of a poor audio path.
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Figure 12. Detecting poor device audio path using sQLEAR.
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What does an independent 
sQLEAR validation unveil
Validation results presented above proved that 
sQLEAR predicts accurately voice QoE both on 
ITU-T P.565 test samples as well as on a large set of 
unknown lab and field collected data.

In addition, for a thorough and complete validation, 
sQLEAR has been also submitted to an independent 
validation performed by an Infovista customer.  The 
independent validation run sQLEAR and ITU-T 
P.863 simultaneously, using various devices in a 
variety of stationery and drive test scenarios and 
findings showed nothing less than what Infovista 
expected. sQLEAR “shows small difference between 
quality scores for various types of devices and 
the impact of the device type itself on the scores 
is significantly smaller than using ITU-T P.863”, a 
desired effect when optimizing and troubleshooting 
voice services’ quality.  In addition, “like ITU-T 
P.863, sQLEAR correctly changes to low values in 
areas of poor RF quality”, which proves sQLEAR 
accurate sensitivity to quality degradations, also a 
crucial feature of a voice QoE predictor like sQLEAR 
for optimization and troubleshooting. Last, but not 
least, the independent party field trials showed 
the same distribution of sQLEAR and ITU-T P.863 
scores, with sQLEAR “results close to ITU-T P.863 
vs.3 suited for EVS FB”, which proves sQLEAR 
suitability for high definition voice quality prediction 
as well as its readiness for 5G voice services’ quality 
evaluation. These observations are reflected in the 
performance results presented in Figure 13a (EVS 
case) and Figure 13b (AMRWB case). The results are 
based on validation tests using 2 pairs of Samsung 
S10 devices making mobile to mobile calls; one 
pair for sQLEAR and the other one for ITU-T P.863. 
The charts show the similarity of the distributions, 
the same best quality bin as well as the same 
sensitivity to poor quality degradations. sQLEAR 
network centric characteristic, and its capability of 
being device independent, is reflected in the small 

differences shown in the distributions.

In conclusion, based on all validation tests, the 

independent party stated that “test results give 

the opportunity to use sQLEAR for accurate quality 

monitoring measurements and benchmarking 

campaigns”.

Which are sQLEAR 
supported test senarios in 
Infovista portfolio
Designed and developed for voice services over 

all-IP mobile networks, 4G/LTE and 5G, sQLEAR aims 

to support both carrier (e.g. VoLTE, VoNR) and OTT 

(e.g. WhatsApp) voice solutions. sQLEAR can predict 

HD VoLTE EVS (with IO and CA modes) and AMR-WB 

voice, and it is ready be used for HD VoNR EVS, once 

the 5G voice service is available in the network.  In 

addition, sQLEAR aims to predict voice QoE of OTT 

applications using generic OTT client emulating 

WhatsApp service behavior. Table 5 shows sQLEAR 

released test scenarios in Infovista portfolio.
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Figure 13a. sQLEAR and ITU-T P.863 with live data 
(Samsung 10, EVS 24.4kb/s).
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As a network centric metric, free of device’s impact 

on the voice quality, sQLEAR is best suitable for drive 

testing scenarios aimed for troubleshooting and 

optimization, monitoring and regression testing with 

TEMS™ Investigation and benchmarking with TEMS™ 

Paragon.

How should one set up 
an independent sQLEAR 
validation with TEMS™
As any machine learning based solution, sQLEAR 

can benefit of extensive independent validations, 

especially in live networks scenarios which can in 

the long run enrich sQLEAR learning of behavior 

of a large variety of possible network equipment 

configurations.  Therefore, besides the fact that they 

prove sQLEAR performance, independent validations 

can eventually enable further enhancements for next 

sQLEAR releases. The latter becomes crucial for 

network testing tools in today’s dynamically evolving 

networks; and sQLEAR machine learning technique is 

best suited to support this.

However, unless carefully and correctly set up, an 

independent validation can provide inaccurate and 

misleading results. Therefore, the following best 

practices should be followed if an independent 

validation of sQLEAR versus ITU-T P.863 is set up 

with TEMS™ Investigation.

	• Drive test route: 

Select a route which covers from poor to very 

good network conditions in order to make sure 

that the MOS voice quality scale is evenly covered, 

and consequently it is ensured that accurate and 

unbiased correlations can be performed on the 

collected data (sQLEAR and ITU-T P.863 scores). 

Drive the route several times and for each time 

switch which devices are running sQLEAR/ITU-T 

P.863 to ensure that there is no offset from the 

position of the devices in the car.

	• Equipment set up: Set up two laptops (one for 

sQLEAR, one for ITU-T P.863) to run mobile to 

mobile (M2M) calls, Device Digital Audio, ITU-T 

P.863 SWB/sQLEAR using the following test set up 

configuration:

	• Language: English 3 (US) (per ITU-T P.565/
AnnexF)

	• Set AudioOption=11 in 
QualityMeasurementConfig to store all trace 
files from sQLEAR for the analysis 

	• In Voice Quality activity set “Store AQM Files: 
Yes” and “MOS limit: 5” in order to store both 
the audio files recorded during sQLEAR (not 
used by sQLEAR) and the .vqi files which 
contain the RTP stream used by sQLEAR. In this 
way it is ensured that in the eventuality of any 
needed verification and/or double checking, 
then ITU-T P.863 can be run offline on the 
recordings corresponding to the .vqi files.

	• Lock on 4G to make sure that only VoLTE to 
VoLTE calls are set-up

	• Lock to the codec and the codec rate in 
order to enable a controlled validation of 
the use cases. (e.g. suggestion: EVS 9.6 and 
AMR WB 12.65). It should be noted that same 
codec and codec rate must be set up on both 
sQLEAR and ITU-T P.863.

Infovista Products

TEMS™ Investigation 22.0 TEMS™ Paragon 4.0

Test Scenarios
VoLTE EVS , EVS AMR-IO VoLTE EVS, EVS AMR-IO

VoLTE AMR WB VoLTE AMR WB

Table 5. sQLEAR consistency across devices.
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	• Devices

	• Use four identical devices from the following 
certified list; by certified it is meant that all show 
a good audio path so that sQLEAR to ITU-T 
P.863 comparison is free of test equipment 
artifacts: 973F, 977F/N, 960U, Sony XZ2.

	• It should be noted that this list refers only if 
a validation against ITU-T P.863 is desired; 
otherwise, devices with poor audio path can 
be used with sQLEAR since the algorithm is not 
using the audio path, as already mentioned.

	• Use the same SIM and network operator for all 
devices in order to avoid possible transcoding 
that degrade ITU-T P.863 score but not the 
sQLEAR score.

	• Validation analysis

	• Export the sQLEAR and ITU-T P.863 scores to 
Excel 

	• Evaluate outliers (e.g. random and sparsely 
distributed samples showing more than 
0.75MOS prediction errors) and use the samples 
for more detailed further analysis (e.g. detection 
of devices with faulty audio path). 

	• Calculate regressions, histograms (0.25MOS 
bins), average and standard deviations. 
It should be noted that if the test samples do 
not cover evenly the entire MOS scale, then 
correlation coefficient is invalid.

What should one learn 
about sQLEAR
Infovista machine learning based sQLEAR algorithm 

predicts voice QoE using IP transport, codec and 

jitter buffer in the end-user voice client information, 

and the temporal speech distribution within the 

reference sample, without the need of recording the 

resulting degraded speech sample. Consequently, 

sQLEAR predicts the network centric view of the 

voice QoE independently of any speech frequency 

shaping and/or speech processing within the device. 

Therefore, free of device’s audio path impact, 

sQLEAR enables cost effective, network centric 

monitoring, optimization and troubleshooting and 

benchmarking of the EVS (CA, AMR-IO) and AMR 

WB based VoLTE QoE. As a network centric and free 

of device’s impact solution, sQLEAR is best suitable 

for Infovista drive testing portfolio, such as TEMS™ 

Investigation and TEMS™ Paragon.

sQLEAR has been developed based on ITU-T 

P.565 framework and it proves to meet the ITU-T 

framework’s minimum performance requirements, 

on all the data bases provided by ITU-T. In addition, 

sQLEAR validation results in live network conditions 

show that it accurately predicts voice QoE by closely 

following ITU-T P.863 scores’ distribution and 

trends. Infovista customers performed independent 

validations and based on the results they concluded 

that “test results give the opportunity to use sQLEAR 

for accurate quality monitoring measurements and 

benchmarking campaigns.”
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